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Two Dimensional Magnetic Fields 

1.1 Representation By Complex Numbers 

In what follows, only two dimensional magnetic fields and 
their harmonic analysis will be considered. In most 
applications to accelerator magnets, this approximation will 
suffice. In two dimensions, the static Maxwell's equations 
state 

However, if W=x+iy and a function f(W) is analytic in w, the 
Cauchy-aeimann equations imply 

where f=fL+if 
8 l 

This implies that BzB*+iB* cannot be analytic in w 
However, it also implies that B is analytic in Wr , th;r 
complex conjugate of W . 
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A general two dimensional magnetic field can be expanded in 
powers of WV . 

The coefficients GI, are known as the harmonics of pole 2k. 
-3 Gt is the dipole harmonic. 
is constant with respect to W* 

The dipole harmonic field 

harmonic. 
G, is the quadrupole 

The field due to the'quadrupole varies linearly 
with respect to W" . 

The G, are in general complex since B is a general function 
of, w* 
harmonic &d 

The real part of GK is known as the normal 
the imaginary part of GK is known as the skew 

harmonic. For instance, if B is a pure quadrupole field, 
all G, are zero except G, , so B may be expressed. 

GP = G, +i Gs where G, and GS are the normal and skew 
quadrupole harmonics respectively. Then if W = ..k &p 9 

53 i B,+~b8 5 A. (G,,, i~&,p;~"+ 

yielding 

B, 3 

1.2 Conventions 

The magnets are measured from the downstream end. i.e. we 
look at the magnet in such a way that the direction of the 
positive beam leaves the magnet and strikes the eye. In 
this co-ordinate system, the y axis is drawn so that +y is 
vertical up and +x is horizontal to the right. Positive 
theta is a counter-clockwise rotation. 
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The definition of normal and skew harmonics used in 
related to 

this 
paper are those 
Facility (MTF) in a simple way. 

employed by the Magnet Test 
MTF defines 

Comparing the two definitions, it is easy to show 

i.e the normal harmonics are defined the same way. There is 
a sign change in the skew harmonic. This is carried over to 
the definition of harmonic moments.(see below) 

1.3 Definition of Harmonic Moments 

The harmonics defined in Section I are not solely dependent 
on' the properties of the magnet in question, but also on the 
amount of current flowing through it. In order to arrive at 
quantities solely dependent on the magnet geometry, harmonic 
moments are defined. 

For a magnet of primary pole 2p (a dipole has p=l, 
quadrupole has p=2 and so on), the harmonic moment MK is 
defined as 

n &-P 

where rO is a reference radius usually taken to be 1". 

Mic is in general complex; its real part is the normal 
moment and the imaginary part is the skew moment. MK is 
independent of the current. 

MK is in fact the magnetic field due to the k" harmonic at 
a point r. on the real axis normalised to the maximum 
field due to the primary pole on a circle of radius rO . 



1.4 Transformation Properties of Harmonics 

Consider a transformation of co-ordinates such that 

WY 
-i.c3 

=wR . > 

i 

This corresponds to a rotation by 8 in a counter-clockwise 
direction. During this rotation, a vector such as W is 
trasformed to W' as given by the equation W' = W a-*.@ 
Consider a magnetic field Ok z i&(j#)"-: 
vector has to transform similarly. i.e. 

Then B, being i 

5,: = 8, p 

= 

-A e 
R 

i.e. under a rotation, the new harmonic GL is given 
-4’ Ki3 

byG,e l 

If G, is real, it is a normal harmonic. One can ask, what 
angle does one have to rotate a magnet till a normal magnet 
becomes a skew magnet ? For this to happen, 
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Thus a dipole has 
quadrupole through 

to be rotated through 90 degrees, a 
45 degrees, a sextupole through 30 degrees and so on for a normal magnet to become a skew 

magnet. 

1.5 Definition of Magnetic centers 

The polynomial expansion 

can be used to approximate a magnetic field in a 
interest within which 

region of 
the expansion is deemed valid. 

magnetic center is defined to be that point at The 
The above 

which B =O. 
expansion of B is a polynomial of degree N. 

Clearly there will be N values of W 
general, these 

for which B = 0. In 
not all valuss of W 

region of interest. 
will lie within the 

For instance, 
magnet, none of 

in the qase of the dipole 
the N values of W 

region of interest. 
will lie within the 

For 
there will 

the quadrupole, sextupole 
be one and only one such value of w 

etc., 
the field is zero within the magnet volume. 

at which 
defined as the magnetic center. 

That point is 

1.6 Effect of being off-center. 

Consider a primary pole 2p 

Clearly the center of the above field is at w 0. If 
one now transforms the measuring system such that i'@ =W 
f ,a, then in this system the center 'is at W' = a. Then, 
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to first order in 5. 

Then in this system, there will be a harmonic G P-, given by 

% 
where M k+ is the p-l harmonic moment. 

Thus, by measuring the p-l* moment, the center 5 can be 
determined for small displacements ,a. If all N harmonics 
are determined, the center may alternately be found by 
solving the polynomial equation B = 0. 

The following note is an attempt to ,clear up some 
misunderstandings about the effects of being off center. 
This is perhaps best done by giving a specific example. For 
a quadrupole magnet, being off center will induce a dipole 
harmonic. Also, if the magnet symmetry is slightly 
distorted, a dipole term will be present. People then 
worry: is the dipole term being measured produced by being 
off the magnetic center or is it produced by symmetry 
violations in the magnet fabrication?. The question is 
basically meaningless as can be illustrated by the 
following. Consider a perfect quadrupole whose magnetic 
center is also its geometric center. Now introduce symmetry 
breaking distortions in the magnet that produce a dipole 
term. Thus the new field can be written: 

where G, is the new dipole term. 

But the net effect of the dipole term thus introduced is to 
shift the magnetic center away from the geometric center of 
the magnet. For B can be re-written: r3 = &G, (LV~ +(so_' 

CN' 8 -' i &, ;t Gl ) 



7 

& 
i.e. the magnetic center is now at W' =OorW = @. f) 6 
So if we now remain at the geometric center, we will measure 
the dipoLe term. But is it due to the symmetry breaking 
effects or due to the fact that we are off the magnetic 
center? The answer is that the symmetry breaking effects 
can be absorbed into a term describing a 
the magnetic center! 

displacement from 

1.7 Transformation of Harmonics under a rotation and 
translation 

Consider a transformation -of co-ordinates such that 

W' is the co-ordinate measured in a system rotated counter 
clockwise by angle 8 
co-ordinate system. 

and translated by,-p from the w 

!3= 5 i 6, (&SjFO' 
K’i 

Equating coefficients of(WA)?Je get GL in terms of G. 
Let K. l 



1.8 Calculation of Magnetic Fields from Current 
Distributions. 

Consider a current element jds at a position given by 2. 
what is the magnetic field dB due to this current element at 
a position W ? This can easily be shown to be 

ds c 

The fieLd due to an arbitrary current distribution j(Z) can be calculated by integrating the above equation. 
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a) Dipole Magnets 

! 
I j 

Sk i -Q. r; 
Consider now a current distribution where for every j(Z) 
there is a j(-z) such that 

This is the case for a typical dipole ma'gnet. field due to the dipole magnet can be written Then the 
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i.e the field due to a dipole magnet with perfect 
does not contain odd powered harmonics. symmetry 
octupole 12 pole etc. Only 6 pole, 

i.e no quadrupole, 
occur. 10 pole 14 pole etc may 

b) Quadrupole Magnets. 

Quadrupole magnets have current distributions such that 

So quadrupoles with 
pole I 20 pole, 

perfect symmetry can only have the 12 
28 pole etc harmonics. 

harmonics occuring Similarly the 
in higher poles can be worked out. In 

general, a magnet with primary pole 2p with perfect symmetry 
can only have harmonics ip('Lk-\) ; iL; '0 2, <.-. 60 
c)Arbitrary Shaped Areas with constant current density. 

Very often, the current density is constant within 
area of arbitrary shape. a given 

For this special case, the surface 
integral in'two dimensions can be reduced to an 
around the contour of the area 

integral 
in question. For this purpose, we employ the two dimensional version of Stokes' 

theorem which can be stated 
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where A is an analytic function of Z. 

We wish to calculate, 

Taking the complex conjugate of Stokes' equation 

The above equation is the harmonic expansion of the field 
due to an arbitrary shaped conductor. In practice, while 
working out the dipole term on a computer, one has to be 
careful that the conductor does not cross the negative real 
axis, since the cut in In(Z) on the negative axis can lead 
to spurious results. In cases where such a crossing is 
inevitable, it may be advisable to translate the conductor 
to the positive real axis, work out the dipole contribution 
and translate back. 
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1.9 Morgan Coil Pickup Equations. 

A Morgan Coil is a device of a particular harmonic 
such that symmetry it is sensitive to fields having that particular 
harmonic and its odd multiples only. To illustrate, a quadrupole Morgan Coil will look as follows: 

We will work out the flux suspended by a Morgan Coil of symmetry 2n in a field of symmetry 2k. e.g for a quadrupole Morgan Coil in a sextupole field n=2, k=3. 
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The radius of the Morgan Coil =r. The 
the center by the 

angle suspended at 
two consecutive legs =osr . 

bisector OC between the two legs is at an angle # ?h 
The 

the zero reference direction OE. 
about 

We wish to calcutate the field at D and integrate the radial 
component of the field along AB to get the flux subtended by 
one sector of the Morgan Coil . The field is given by 

Therefore the flux through the leg = K- 

where L = length of Morgan Coil . 

- 

To get the total flux through the coil, we have to sum over 
every other sector of the coil. To see this I consider the 
total area subtended by the coil and integrate the field 
over it taking care to remain on the same side of.the 
subtended area. 
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Thehthe sectors which are to be summed over 
h 

are at 
given by 

angles 

Therefore total flux 
-9% 
4 -k = 2/A. sc;lrr kir 

K 
L-y. 

Consider the case when n = k. i.e. Morgad Coil has the 
same symmetry as the field. 

In this case, 

In the above equation, 4) is the angle of the 
The a;gle 

bisector of 
the first sector. 

+ 
of the first leg = (p -z. 1 LYL 
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where GK = G, +~GJ I Gin, and GS are 
skew components of the field respectively. 

the normal and 

The case k # n. 

When the Morgan Coil symmetry is not the same as the field 
symmetry, the flux suspended is in most cases zero except 
for those cases where k is an odd multiple of n. To see 
this, examine the behavior of the sum 

s 
-Xk 4, 

%a 

z 
-/i k (%I, rz- 

&,& ; ,y, ‘X=r 

A L 

When k is an odd multiple of nr one can show that, 

So a dipole Morgan Coil is sensitive to a ,sextupole field 
but not to a quadrupole field. 

1.10 Transfer constants 

Using a Morgan Coil with various windings, one can perform 
harmoni 

1 
analysis of. magnets. Also, it is possible to 

derive Bdl for the magnets at a fixed radius r0 . 

The flux subtended by a field of symmetry 
Coil of symmetry 2n is given by 

2n on a Morgan 

assuming no skew term is present, fi r the sake of analysis. 



16 

TO measure the transfer constant (another term for 
ru 1, the above circuit is used. The voltage a 
shunt is measured to obtain the current in the magnet coil. The voltage across the Morgan Coil is measured to obtain the 
field produced by the magnet. 

The voltage induced in the Morgan Coil = Kqc = - i 4 '," 
l 

.  , *  y,j‘ = 

2-z 

The harmonic G -is proportional to the current I. 

G-, = g 

where I O 
Amps. 

is the standard current usually taken to be 50 
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The current I can be 
'hAyc 

found by measuring the shunt 
voltage. 

The above expression in RMKS will yield Q in Tesla metres if 
G, is in Hz, R-is in Ohms, and r is in me,tres. 

to convert to kG" remember that 

1OkG = 1 Tesla 

1" -2 = 2.54x10 metres 
1kG" -3 = 2.54x10 Tesla metres 

Q should be divided by 2.54~16~ 
3 to get the answer in kG 

in. 
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